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Introduction

▪ Social Media

▪ Social Media is mainly featured by sharing photos and social

connections (friends, relatives, etc.)

▪ Learning models with social media data can be developed

towards various goals

▪ Unfortunately, it may lead to information leakage and expose

privacy w/ or w/o intention

▪ You can imagine how furious the celebrity will be when their

family members photos are exposed without their permission

▪ Data Leakage

▪ Limited time to read Terms & Conditions

▪ Limited knowledge (especially children) to understand

▪ Unintentional leakage

▪ Generally, people have no willingness to disclose personal

data but it has already been out of our control, as long as

people remain connected by the society and the Internet

Dataset
▪ Families in the Wild (FIW)

▪ 11 types of relationships

▪ Same generation (S-S) to first (M-D) 

to third (GM-GD)

▪ Consists of 1000 families with 

average 12 images/family

▪ Pairs are labeled with true or false 

kin relationship

▪ Created two social networks

Social Family Recognition (SFR)

▪ In our graph, each node represents visual features generated

by the state-of-the-art kinship descriptors

▪ Edges encode the relation between two nodes

▪ Three types of relations are considered i.e.,

▪ Identity (ID): Link nodes of the same person

▪ Kinship (KIN): Link nodes of the same family label

▪ k-NN: Link nodes between different families, to avoid

isolated nodes

Family recognition on Facial 

Images only vs. Images + 

Graph

Adversary for Familial Privacy Protection

Proposed Framework

▪ Privacy at Risk

▪ Social media data could be handy to develop a model

▪ This model could be used against finding private information
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Model Accuracy (%)

SphereNet 17

Ours 98.89

▪ Family recognition can be addressed under the network

environment by casting it to a semi-supervised learning problem

on the social networks

▪ Conventional visual family recognition (VFR) is to train a multi-

class classifier first, and then assign family labels to each probe

image in the running time

▪ Even with the most recent deep features designed for visual

kinship, e.g., SphereNet (Liu et al. 2017), the accuracy is far

from acceptable

Family Recognition on the Graph

Family-100

▪ Contains 502 subjects

▪ 2758 facial images

▪ 502 nodes for training

▪ 2256 nodes for validation 

and testing

Family-300

▪ Contains 1712 subjects

▪ 10255 facial images

▪ 1712 nodes for training

▪ 8543 nodes for validation

and testing

Results
Impacts of graph parameters

Joint Feature and Graph Adversarial Samples

Loss and Accuracy on Family Impacts of ∈ on visual and node 

features
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▪ Adversarial Attack:

▪ Added Noise to Node Features by calculating sign of the Gradient

▪ Added/Removed edges (relationships) between nodes

▪ Model Compromised:

▪ By using Noisy Features and Noisy Graph
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