Cross-Database Mammographic Image Analysis through Unsupervised Domain Adaptation Deepak Kumar¹, Chetan Kumar¹, Ming Shao² ¹Department of Data Science, University of Massachusetts, Dartmouth ²Department of Computer and Information Sciences, University of Massachusetts, Dartmouth

Introduction Source Data 224 x 224 VGG/ResNet Pre-trained Model

- End-to-End training algorithm for whole-image breast cancer diagnosis is based on mammograms without the need of the ROI Calcification Mass Bkg Ben Mal Ben Mal annotations. • In End-to-End three different convolutional network are used but first they trained on the patch classifier by changing the learning rate by freezing and unfreezing the layers. • They fixed the mammogram patch image size to 224 x 224 and whole image size 1152 x 896. Domain Adaption Feature Space • TCA (Transfer Component Analysis) Learn the common Components { 0 - Benign / 1- Malignant } Reduce the differences between source and target distribution by projecting on common subspace BDA (Balance Distribution Adaption) Balance the marginal and conditional distribution adaption • For different data Marginal distribution is important • For similar data Conditional distribution is important wide Handles the data class imbalanced by adjusting each class weight at early stage CoRAL (Correlation Alignment) CoRAL works on unsupervised domain adaption automate the process of medical image classification Map source domain distribution by recoloring the whitened features with second order statistics of target domain know as Region of Interest (ROI) Pos. source domain data Pos. source domain data Neg. source domain data Neg. source domain data Pos. target domain data Pos. target domain data eg. target domain data Neg. target domain data has the same feature space and follows the same distribution the model Target domain data rce domain data extraction from publicly available databases 2 3 4 5 6 7 8 9 CBIS-DDSM Datasets InBreast MIAS following transfer learning methods: • TCA (Transfer Component Analysis) BDA (Balance Distribution Adaption) **CBIS-DDSM** InBreast MIAS CoRAL (Correlation Alignment) • Three publicly available dataset are used CBIS-DDSM 3103 scanned mammograms **Transfer Learning** Data contain Benign and Malignant images Dataset contains Cranial Cardo (CC) and Media later oblique • Pre collected label data to predict new data (MLO) views

- Breast Cancer is common health issue • 1.7 million cases were found and total 14.71% deaths occurred world • Mammography is the best option available to diagnose breast cancer • Radiologists expertise are required for interpolation of mammograms • Computer Assisted Diagnosis (CAD) have caught the attention to • CAD completely rely on the pre segmented portion of mammograms • These system rely on the assumption that training and future data • It is expensive to acquire the sufficient new labeled data to rebuild Pre-trained End-to-End training models are used for feature • Data has been transformed into same feature space using the • Traditional machine learning methods learn models based on:
- New data should be in same distributed space
- It is difficult to get rich labeled data
- Transfer learning facilitates
- Different distribution for training and future data
- Transfer learning can be promising
 - Characteristics of different sub domain are mapped into wide common domain

Methodology

- InBreast
- Full field digital images contain different color profiles The dataset contains 410 mammograms from 115 patients including Cranial Cardo (CC) and Media Later Oblique (MLO)
- views
- Data contains BI-RAIDS readings
- Sample was divided in Benign and Malignant based on BI-RAIDS reading

- Only 109 images are labeled

1.L. Shen, "End-to-end training for whole image breast cancer diagnosis using an all convolutional design," arXiv preprint arXiv:1708.09427, 2017 2.S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, "Domain adaptation via transfer component analysis," IEEE Transactions on Neural Networks, vol. 22, no. 2, pp. 199–210, 2011. 3.B. Sun, J. Feng, and K. Saenko, "Return of frustratingly easy domain adaptation." in AAAI, vol. 6, no. 7, 2016, p. 8. 4.J. Wang, Y. Chen, S. Hao, W. Feng, and Z. Shen, "Balance distribution adaption for transfer learning," 2017.

• Dataset contains 322 MLO view mammograms • MIAS images are scanned copies of films

Experimental Results

	Dimension	InBreast		MIAS		MIAS PATCHES	
JRIMAL DUSINI TRAINING AUC	Dimension	Accuracy	AUC	Accuracy	AUC	Accuracy	AUC
InBreast — MIAS — MIAS PATCHES	50	56.58%	48.08%	50.44%	47.5%	59.48%	52.49%
	100	57.62%	51.7%	53.09%	46.68%	53.15%	56.89%
	150	57.1%	53.16%	55.75%	56.33%	56.89%	56.62%
	200	55.81%	51.19%	54.86%	54.49%	58.62%	57.19%
	250	54.78%	50.67%	53.09%	52.09%	53.09%	50%
	300	54%	47.98%	47.78%	49.97%	52.58%	57.98%
0 200 300 400 500 600 700 800 900 1000	500	52.71%	47.6%	54.86%	50.6%	55.17%	53.14%
DIMENSIONS	100	54.78%	47.6%	48.67%	52.62%	50.86%	48.17%
				RDA		CoRAL	
DDSM-INBREAST AUC	Dimension	Accuracy	AUC	Accuracy	AUC	Accuracy	AUC
→ TCA → BDA → CoRAL	50	74.16%	57.6%	75.64%	52.43%	60.72%	54.48%
	100	74.16%	57.55%	75.64%	52.68%	52.71%	49.18%
	150	74.16%	57.45%	75.64%	52.4%	55.03%	50.78%
	200	74.16%	57.48%	75.64%	52.4%	55.29%	54.31%
	250	74.16%	57.36%	75.64%	52.6%	55.81%	53.01%
	300	74.16%	57.46%	75.64%	52.28%	55.29%	50.29%
0 200 300 400 500 600 700 800 900 1000	500	74.16%	57.52%	75.64%	52.28%	54.52%	50.85%
DIMENSIONS	1000	74.16%	57.43%	75.64%	52.28%	55.81%	52.08%
		ТСА		RDA		CoRAL	
DDSW-WIAS AUC	Dimension	Accuracy	AUC	Accuracy	AUC	Accuracy	AUC
	50	56.03%	54.93%	58.33%	48.24%	55.17%	43.14%
	100	56.03%	55.05%	58.33%	52.1%	56.03%	47.9%
	150	56.03%	54.6%	58.33%	52.1%	49.13%	46.4%
	200	56.03%	55.72%	58.33%	54.96%	49.13%	49.89%
	250	56.03%	55.26%	58.33%	52.94%	53.44%	49.47%
	300	56.03%	54.81%	58.33%	52.25%	48.27%	41.09%
0 200 300 400 500 600 700 800 900 1000	500	56.03%	56.14%	58.33%	52.1%	47.41%	41.9%
DIMENSIONS	1000	56.03%	55.93%	58.33%	50.44%	47.41%	45.97%
		ТСА		RDA		CoRAL	
DDSM-MIAS PATCHES AUC	Dimension	Accuracy	AUC	Accuracy	AUC	Accuracy	AUC
TCA BDA CORAL	50	54.86%	60.22%	56.52%	50.01%	49.55%	48.36%
	100	54.86%	60.66%	56.52%	48.99%	53.1%	50.06%
	150	54.86%	61.01%	56.52%	51.99%	55.75%	54.46%
		1	1	1	i .	1	1

	Dimension	TCA		BD	A	COKAL		
		Accuracy	AUC	Accuracy	AUC	Accuracy	AUC	
	50	54.86%	60.22%	56.52%	50.01%	49.55%	48.36%	
	100	54.86%	60.66%	56.52%	48.99%	53.1%	50.06%	
	150	54.86%	61.01%	56.52%	51.99%	55.75%	54.46%	
	200	54.86%	60.59%	56.52%	51.99%	52.21%	54.43%	
	250	54.86%	60.47%	56.52%	51.99%	54.86%	52.78%	
	300	54.86%	60.88%	56.52%	51.99%	49.55%	50.13%	
	500	54.86%	61.04%	56.52%	51.01%	53.98%	54.65%	
	1000	54.86%	60.53%	56.52%	51.99%	53.09%	53.45%	

References

UMass Dartmouth • umassd.edu